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Influence of Visible Light and Ultraviolet Irradiation on
Motility and Fertility of Mammalian and Fish Sperm

T. ZAN-BAR, M.Sc.,1 B. BARTOOV, Ph.D.,1 R. SEGAL, M.Sc.,1 R. YEHUDA, Ph.D.,1

R. LAVI, Ph.D.,2 R. LUBART, Ph.D.,2 and R.R. AVTALION, Ph.D.1

ABSTRACT

Objective: The effects of visible light irradiation on sperm motility, fertility, and reactive oxygen species (ROS)

formation were investigated and compared in ram and fish (tilapia). Background Data: Low-energy visible

light has previously been found to modulate various processes in different biological systems. In the literature,

it is accepted that the first step following visible light irradiation is the formation of ROS by endogenous cel-

lular photosensitizers. Methods: Sperm of ram and tilapia were irradiated with various light sources (400–800 nm

white light, 660 nm red light, 360 nm blue light, 294 nm UV), and their motility and fertility rates were mea-

sured. The amount of ROS generated by irradiation was estimated using electron paramagnetic resonance

(EPR) technique. Results: Sperm taken from tilapia showed higher motility and fertility following red and

white light irradiation. In contrast, the motility and fertility of ram sperm were slightly increased only by red

light. A negative effect on motility and fertility of sperm of both species was obtained following irradiation

with UV and blue light. The amount of ROS produced in irradiated tilapia sperm was much higher than that

of ram sperm. Conclusions: The results show that different wavelengths differentially affect tilapia and ram

sperm motility and fertilization. The difference in response to the various light sources might be explained by

the different amounts of ROS formation by ram and tilapia, which are in agreement with the physiology of

fertilization appropriate to each of these species. Based on these results, it is suggested that in vitro fertiliza-

tion in mammals should be performed in darkness or at least under red light.

INTRODUCTION

THE THERAPEUTIC EFFECTS of visible light have been long

known. Low-energy visible light (LEVL) increases the

healing rate of diabetic wounds1 and defective bones2; there is

also evidence of the promotion of restoration of severely in-

jured peripheral nerves following visible light irradiation.3 In

vitro experiments show that LEVL increases cell prolifera-

tion,4–6 induces respiratory burst in neutrophils,7 and enhances

the fertilizing capability of sperm cells.8

The cellular mechanisms underlying visible light–tissue

interactions are also under extensive study.7,9,10 Though no

single mechanism has been unequivocally established, most

researchers agree that the first step following visible-light ir-

radiation is the formation of reactive oxygen species (ROS)

by endogenous cellular photosensitizers.9,11,12 Possible en-

dogenous photosensitizers in the visible range can be por-

phyrins,13–15 mitochondrial cytochromes,16 pyridine cofac-

tors, NADPH/NADH,17 Fe-S clusters,18 and flavoproteins/

riboflavin.19–22

Low ROS fluxes (in contrast to high fluxes which destroy

the cell) have recently been shown to act as messengers which

activate cell processes such as transcription factor release,

gene expression, muscle contraction, and cell growth,23–26

whereas in sperm cells, there is evidence that minute amounts

of ROS are involved in capacitation and acrosome reaction.27

The tight link between ROS and intracellular calcium ions

([Ca2+]) led to the study of changes in [Ca2+]
i
following illumi-

nation. For example, we have shown that an increase in [Ca2+]
i

is detected in illuminated cardiomyocytes28 and sperm cells,8

following generation of O
2

·� or H
2
O

2
in LEVL illuminated car-

diomyocytes28 and sperm cells.8

The influence of x-ray and UV radiation on sperm motility

and fertilization has been extensively studied.29–31 As for the

1Life Sciences Department, 2Chemistry Department, Bar-Ilan University, Ramat-Gan, Israel.
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influence of visible-light irradiation on sperm motility and fer-

tility, only a few works are mentioned in the literature.

Singer et al.32 found that human sperm motility could be im-

proved by near IR irradiation at 940 nm, and Lenzi et al.33

showed that progressive motility of human sperm could be en-

hanced following red-light irradiation at 647 nm. Our

group34,35 found that exposure of both ram and bull sperm to

632 nm laser irradiation changed their intracellular calcium

concentration ([Ca2+]), which is essential for capacitation and

acrosomal reaction, and therefore, successful fertilization.

The aim of the present study was to investigate whether visi-

ble light has a different effect on motility and fertility of fish

(tilapia) and ram sperm, as fish sperm are directly exposed to

light during underwater extra-corporeal fertilization, while

mammalian sperm fertilization is accomplished internally,

without exposure to any source of light.

We increased the motility and fertility of tilapia sperm using

red and white lights, whereas the motility and fertility of ram

sperm were slightly increased only by red light. As expected,

UV and blue light strongly decreased the motility of both fish

and ram sperm. We also found that production of light-induced

reactive oxygen species (ROS) in fish sperm is much higher

than in ram, which might explain their different responses to

the various light sources.

MATERIALS AND METHODS

Ram sperm preparation

Fresh sperm ejaculates from rams were supplied by the an-

imal facilities at Bar-Ilan University. After ejaculation,

semen was diluted 1:1 with ringer glucose phosphate (pH =

7.8), as described by Mann.36 The semen was washed twice

at 400g maximum for 15 min. Sperm cells were brought to a

concentration of 50 � 106 sperm cells/mL (this concentra-

tion was found optimal for sperm motility measurements

with a spermeter.37,38

Tilapia sperm preparation

After urine drainage of male tilapia, the sperm was with-

drawn by manual stripping of the lower abdomen. A pool of

semen taken from three to five males was diluted 1:2 with fil-

tered aquarium water, and 1 mL of it was added to a 24-mm-

diameter tissue culture Petri dish that was irradiated by the

selected light source. Motility was then determined using a

spermeter (Gammeta-3, developed in Bar-Ilan University).37,38

Sperm motility and fertility

A hematocrit glass capillary (Supe-Rior, Germany) was

filled with sperm, and motility was measured using a sperme-

ter.38 Motility was measured three times for each sample and

the average motility ± SD was calculated.

Fertility of tilapia sperm was examined using in vitro fertil-

ization of O. niloticus eggs with O. aureus sperm. Eggs and

sperm were stripped from adult fish a few minutes before

spawning. Eggs were washed and fertilized with sperm that

had been exposed to light. After 2–3 min, the fertilized eggs

were put in Zuger bottles at 28°C. Seven days later, embryo vi-

ability was determined at the swimming stage39 in order to de-

fine the fertility rate. The fertility of ram sperm was tested as

previously described.37,40 Eggs were taken from ewe ovary im-

mediately after slaughter, washed and fertilized with sperm as

detailed above.

Irradiation tools

Sperm samples received various doses of intermittent light

for 1–5 min every 2 or 5 min. The following light sources

were used: white light 400–800 nm, 40 mW/cm2; red light,

660 nm light-emitting diode, 10 mW/cm2; blue light, 360 nm,

1.5 mW/cm2; UV, 294 nm, 0.1 mW/cm2.

ROS measurement

The ROS measurements were performed as previously re-

ported41 using electron paramagnetic resonance (EPR) cou-

pled with the spin trap 5,5-dimethyl-1-pyrroline-N-oxide

(DMPO). In brief, DMPO (0.02 M, Sigma) was added to ram

sperm suspension at 109 or 107 cells/mL tilapia sperm cells.

Then, 100 µL of the sperm suspension were drawn into a gas-

permeable teflon capillary and inserted into a narrow quartz

tube that was open at both ends (to ensure the presence of suf-

ficient oxygen during irradiation). The quartz tube was then

inserted into the EPR cavity, and the ESR spectra recorded on

an x-band spectrometer.

The microwave of the EPR was set at 9.7 GHz and power at

20 mW. Modulation frequency and modulation amplitude were

100 KHz and 1 G, respectively. Receiver gain was 2 � 105,

time constant (TC) was 655 msec, conversion time 82 msec,

and measurement time 168 sec. After acquisition, the spectra

were processed by Bruker WIN-EPR software, version 2.11,

for peak integration.

Trapping of the OH radical by DMPO results in DMPO-OH

spin adduct, characterized by a typical quartet signal. DMPO

also traps super oxide anion radical to give DMPO-OOH,

which decomposes to DMPO. Assuming a linear dependence

of the generated hydroxyl and super oxide anion radicals on

cell number and fluency of the light source, we normalized the

first peak area (of the DMPO-OH quartet) to one cell/cm2 illu-

minated with an energy dose of 1 J/cm2. The normalized area

for each wavelength is shown in Figure 5.

RESULTS

Influence of UV and visible light on motility of
ram and tilapia sperm

In general, IOMs (which represent an average of the sperm

motility index) of ram sperm in the dark (~3000), were found

to be almost five fold higher than those of tilapia (~550;

Fig. 1a,b). The IOM profile following blue light (360 nm)

showed a continuous decline both in ram and fish sperm, as the

irradiation energy dose increased (Fig. 1a,b). However, differ-

ent IOM profiles were obtained in tilapia and ram sperm in re-

sponse to red and white light. IOM profiles obtained with

white and red light in fish sperm peaked at 5 and 10 min of ir-
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radiation, respectively, before showing significant decrease

(Fig. 1a), whereas ram sperm motility showed a slight insignif-

icant increase with red light and a decrease with white light

following more than 5 min of irradiation (Fig.1b).

Low intensity UV (294 nm) irradiation of tilapia sperm re-

sulted in a significant decrease as early as the first 10 sec, fol-

lowed by slight IOM recovery at 20 and 30 sec (Fig. 2a),

before dropping completely at 75 seconds. Ram sperm main-

tained its initial decreased motility up to 30 sec, before exhibit-

ing a strong decrease at 40 sec (Fig. 2b). The white-light

irradiation of UV-treated (UV+, 10�) tilapia sperm resulted in

significantly increased motility compared to the UV-irradiated

sperm (p = 0.001) or to the dark (p = 0.006) controls. The white

light also had a significant (p = 0.02) pro-motility effect on the

control UV group (Fig. 3a). In contrast, white-light irradiation

of UV-treated ram sperm, sperm resulted in a highly significant

decrease of motility (p = 0.001 and p = 0.002, respectively) as

compared to dark control (Fig. 3b).

Influence of visible light on ram 
and tilapia sperm fertility

Red-light and white-light irradiated tilapia sperm resulted in

higher embryo viability (swimming stage) of 45% (red) and

42% (white), as compared to 30% obtained from non-irradiated

control sperm. In contrast, blue-light irradiation resulted in a

significant (p = 0.05) decrease of viability to 20% (Fig. 4a).

Red-light irradiation of ram sperm resulted in an embryo vi-

ability of 65%. In contrast, white light and blue light decreased

this viability to 32% and 19%, respectively. Ram sperm kept in

darkness consistently produced an embryo viability of 56%

(Fig. 4b).
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ROS production

With the rough assumption that hydroxyl and super oxide

anion radicals represent the amount of ROS in the irradiated

cells, it can be seen that production of ROS in sperm was sig-

nificantly higher in tilapia than in ram following irradiation

with all wavelengths of visible light and with UV. White light

induced the minimal ROS production (2.4 � 10�14 au in tilapia

and 3.12 � 10�15 au in ram); red light increased this produc-

tion to 1.1 � 10�13 and 8.4 � 10�15, respectively, and blue

light induced the greatest degree of ROS production (4.4 �

10�12 and 2.7 � 10�13, respectively; Fig 5a). UV irradiation

(2000 erg/mm2) resulted in >50-fold higher ROS production in

tilapia sperm than in ram sperm (p = 0.001; Fig. 5b).

DISCUSSION

Our findings show that different wavelengths differentially

modulate tilapia and ram sperm motility and fertilization. The

effect of white light on sperm motility was evident in (1) the

increase of tilapia sperm motility (Fig. 1a) and (2) restoration

of the motility of UV-injured tilapia sperm to a level even
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higher than in the control non-irradiated sperm (Fig. 3b). This

palliative effect on the motility of UV pre-irradiated sperm is

in line with that of Karu42 who found that visible-light irradia-

tion increased the survival of �-irradiated HeLa cells. In con-

trast to tilapia, ram sperm was found susceptible to white light

that caused a significant decrease in motility in both UV-irradi-

ated and non-irradiated sperm when compared to sperm main-

tained in darkness (Fig. 3b). These findings are not surprising

when we consider the natural conditions of fertilization of both

tilapia and rams. Fish sperms are directly exposed to light dur-

ing the underwater extra-corporeal fertilization, while mam-

malian sperm fertilization is accomplished internally without

exposure to any source of light. Red light (660 nm) signifi-

cantly improved only tilapia sperm motility but had minor pos-

itive effect on ram sperm. These results are in agreement with

the finding of Lenzi et al.33 who showed enhancement of the

progressive-motility of human sperm following red-light irra-

diation at 647 nm. Both tilapia and ram sperm were found sus-

ceptible to UV and blue-light irradiation. The sperm motility

level was reported to correlate with the fertility rate.43 Al-

Qarawi et al.44 found a linear correlation between motility and

fertility in the dromedary. Our results are consistent with this

finding (Fig. 4). Based on these results, it seems reasonable to

suggest that in vitro fertilization in mammals should be per-

formed in darkness or even better, under conditions of red

light, as red light slightly increased the in vitro fertilization rate

of ram sperms (Fig. 4b). Red light was also previously found to

stimulate the fertilizing capability of mouse.8,45

Although in male reproduction ROS are known mostly for

their detrimental effects on sperm function, there is now in-

creasing evidence to suggest that, as has been observed in other

cell types (i.e., neutrophils46) and organelles (i.e., endoplasmic

reticulum),47 very low and controlled concentrations of ROS

participate in signal transduction mechanisms. Sperm capacita-

tion and acrosome reaction are complex processes also regu-

lated by signal transduction mechanisms, and evidence that

minute amounts of ROS are needed for these processes, is

accumulating.48

To detect oxy radicals, we used the EPR-spin trapping tech-

nique coupled with the spin trap 5,5-dimethyl-1-pyrroline-N-

oxide (DMPO). DMPO can trap radicals such as, O
2

·� and

·OH.

DMPO+·OH → DMPO-OH (1)

DMPO+ O
2

·�→ DMPO-OOH (2)

DMPO-OH quartet signal can arise either by addition of a gen-

uine ·OH radical to the double bond of DMPO, or upon addi-

tion of O
2

·� to form DMPO-OOH, which decomposes to

DMPO-OH.49

Assuming that the DMPO-OH signal monitors O
2

·� and OH

radicals, which can represent cellular ROS production, our re-

sults show that tilapia sperm generates more ROS than ram

upon red-light irradiation (Fig. 5), which can explain the posi-

tive effect of red light on tilapia sperm motility and fertility.

UV and blue-light irradiation, which were found to generate

high levels of ROS, resulted in a significant decrease of motil-

ity and fertility in both tilapia and ram sperm.

In a previous report, UV irradiation of tilapia sperm with a

dose of 11,000 erg/mm2 was found to completely eliminate

sperm fertility.50 Exposure of ovules to UV-irradiated (7200

erg/mm2) cattle sperm resulted in a significant (p < 0.05) de-

crease in fertility and in the embryonic development rate at the

blastocyte stage.51 In addition, Peer52 showed that ROS at high

concentrations (3.2–3.8 µm) caused a significant decrease in

ram sperm motility.

Furthermore, our results showed that the longer the wave-

length of the light used, the less ROS were produced. This re-

sult could be explained if ROS formation is attributed to

specific cellular photosensitizers such as cytochromes, which

absorb long wavelengths of light less effectively, and therefore

also generate less ROS.53

In summary, our results suggest that visible light affects

sperm motility and fertilization depending on the wavelength

employed and the amount of ROS produced. UV or blue light

generates high levels of ROS, resulting in a decrease in motil-

ity and fertility. On the other hand, low levels of ROS can in-

crease motility and fertility. In tilapia sperm, red and white

light, which induce low levels of ROS, were found to improve

motility and fertilization, while in ram sperm, only red light

slightly improved the motility to a small extent. The difference

between the response to visible light of ram and tilapia is in

agreement with the physiology of fertilization appropriate to

each of these species. Based on these results it is suggested that

in vitro fertilization in mammals should be performed in dark-

ness or at least under red light.
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